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Fast computation of limit cycles in an industrial application
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Abstract. A model problem is described that requires the study of a system of the formv̇(t) = εFP (v(t), t)which
depends on a set of parametersP, and whereε � 1. The problem comes from an industrial application where it
is a kernel of an optimization procedure. The optimization depends on computing the limit cycle, and the problem
needs to be solved repeatedly. Short computation time is therefore essential. The naive approach is to integrate the
equation forward in time, starting from an arbitrary initial condition, until the transients disappear and the limit
cycle is approximated within a given tolerance. This approach is too slow and thus impractical in the context of
the optimization procedure. The problem involves two types of asymptotic considerations: long-time asymptotics
and small-parameter asymptotics. Here a simple approach is demonstrated, based on implementing the averaging
method. This reduces the solution time to the point that the optimization procedure becomes feasible.
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1. Motivation

Our study is motivated by an industrial engineering problem of designing a piezoelectric
motor. The design stage of a certain component of the product required the solution of its
model which is represented by a system of the formv̇(t) = εFP(v(t), t). This was the kernel
of an optimization procedure. Here,v is an unknownm-dimensional vector modeling velocity,
F is the givenm-dimensional right-hand side (RHS) of the system, modeling acceleration. The
notationFP indicates that the problem depends on a set of parameters denoted byP. The RHS
was continuous and piecewise smooth, typically bounded between two linear functions, and
also periodic int . The periodicity accounts for a periodic forcing component in the system,
and the nonsmoothness accounts for the changes in the direction of this force with respect to
other forces such as friction. The small parameterε appears, due to the fast oscillations in the
system, by rescaling the time (ωτ→ t).

Based on practical arguments, the physical system as well as the solution of its model
were assumed to approach some periodic behavior for large enought . In mathematical terms,
this implies that there exists a stable (attracting) limit cycle. The design stages required the
approximation of the limit cycle and some of its functionals such as for example, the average
over one period. An analytic solution was not always available and a numerical solution was
attempted. The approach adopted by the R&D team in that industry was to choose zero initial
conditions for the velocity (as in a real experimental situation), to solve the system numerically
until all transients have disappeared, to obtain the limit cycle numerically, and to compute the
required functionals. The problem with this approach was (a) the large number of parameters
(over ten in this case) on which the system depended required a great deal of runs, (b) the long
time before the transients disappeared for each run slowed down the study of the model so
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much so as to hinder the time-table set by the industry for the development of the project. The
speed of approach to the limit cycle depends crucially on the initial guess.

The approach we describe here takes advantage of asymptotics in two ways.
(i) We use ‘smallε’ perturbation to obtain an initial guess for the entire computation
(ii) We consider the solution at time intervals of the period of the limit cycle as values in

a fixed-point iteration process and use acceleration techniques to rapidly approach a point on
the limit cycle.

The combination of these two techniques indeed solved the problem practically.
The method we describe was successfully applied to systems with dimensionalitym > 10.

In this note we demonstrate the study of a one dimensional (m = 1) system, where we can
easily prove that the solution converges to a limit cycle, and the study of a two dimensional
(m = 2) system.

2. A case study

Consider the one dimensional ordinary differential equation (ODE)

v̇(t) = εFP(v(t), t), (1)

where(˙) denotes differentiation with respect to timet andε is a small parameter. The notation
FP indicates that the right-hand side of Equation (1) depends on a set of parameters, namely
P. For simplicity, we omit the explicit notation of this parameter dependence, and hereafter
write F(v, t) = FP. The functionF(v, t) is continuous and piecewise smooth. Suppose also
thatF(v, t) is periodic in the variablet , and denote its period byT .

Equations and systems of the type (1) with smooth and nonsmooth right-hand side are
an important class of dynamical systems that have various applications in different fields. In
modeling and design applications Equation (1) is studied with different parameter values, and
must therefore be repeatedly solved many times (see, for example, [1], [2]).

We assume here that, if the initial condition is chosen within some known interval, the
resulting solution of (1) is bounded int ∈ [0,∞). This is a natural assumption in the context
of the real applications, wherev(t) is interpreted as the velocity of a modeled object, and (1)
describes its acceleration. As we explain below, this guarantees the existence of an attracting
limit cycle, that is, thatv(t) approaches a certain periodic solution (with periodT ) ast →∞.
We are interested in the following computational problems:

PROBLEM 1. Compute the limit cycle to which the solutionv(t) approaches ast →∞.

PROBLEM 2. Compute the average of the limit cycle solutionv(t) over one period,

1

T

∫ t+T

t

v(s)ds, for t →∞. (2)

An analytic solution to (1) is often not available, or cumbersome to write down, manipulate
and get insight from, especially for a function of many parameters. Thus, a numerical approach
is required. When these computations need to be repeated, reducing the computational effort
of this numerical task is imperative. To that end, we try to minimize the required number of
evaluations ofF(v, t). This is equivalent to attempting to decrease the number of times that
we integrate (1) numerically, over a time interval of lengthT .
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2.1. THE STRAIGHTFORWARD NUMERICAL APPROACH

The straightforward approach for solving problems 1 and 2 is to solve (1) numerically. To that
end, we start with some initial conditionv(0) = v0 and propagate the numerical trajectory
(t, v(t)) in time, by applying some numerical ODE integrator (for example a Runge-Kutta
scheme). We integrate the ODE for a long enough time interval, until the transients disappear,
obtaining a discrete set of points(ti , vi), 1≤ i ≤ L, (L is the number of discretization points)
covering one cycle.

A practical way to check that transients have indeed disappeared is to compare the numer-
ical trajectory of then-th cycle to then+1st cycle, and to stop the procedure when the differ-

ences are sufficiently small in some norm, for example, when the RMS=
√

1
L

∑L
1 (v

n+1
j − vnj )2

falls below a certain prefixed value. This requires the storing of an appropriate number (2L) of
trajectory points. For Problem 2 we need to store only the estimated average over the cycles.

We measure the computational cost of this procedure in terms of the number of times that
(1) is integrated over a time interval of lengthT . Obviously, this cost can be reduced by a
good guess forv0.

2.2. THE FIXED-POINT APPROACH

We now consider our computational problem from a different point of view. Suppose that at
some timet1 we have computed the numerical trajectory point(t1, v1), which is a point on the
limit cycle. SinceF(v, t) is periodic int with periodT , this implies that a) The period of the
limit cycle is alsoT ; b) If we choose the initial condition(t1, v1), and propagate (1) in time up
to t2 = t1 + T , the computed trajectory point(t2, v2) must be equal to the point(t1, v1). This
motivates the following stability assumption: if point(t1, v1), is close to a point on the limit
cycle, and we propagate (1) tot2 = t1+ T , using initial condition(t1, v1), then the computed
trajectory point(t2, v2) is close to the point(t1, v1).

Formally, we now define the following mapM : R → R; M = Mt(u
∗) is the value of the

solution of (1) att + T , i.e., v(t + T ), given initial conditionv(t) = u∗.
In these terms, our problem is restructured to the problem of computing the fixed point of

the mapM. Indeed, once the fixed point is computed (estimated), we can solve problems 1
and 2 at the cost of one additional integration of (1) over one cycle of lengthT .

Clearly, any numerical ODE integration can be interpreted as an iterative method for
computing the fixed point ofM, namely:

vn+1 = M(vn), n = 0,1, . . . . (3)

Since t is arbitrary, we can take any larget and shift it to, sayt = 0. Thus, the explicit
dependence of Equation (3) on the chosen timet is omitted.

We now make the following observations that lead to a practical solution of the problem:
1. The computational cost of one iteration of (3) is the cost of integrating (1) along a time

interval of lengthT . Thus, we can solve the long-time asymptotic problem by using (3)
with some ODE integration method. To that end, we need only to store a few values of
M(vn).

2. For any choice of an ODE integrator to computeM, the iterative scheme (3) can be
replaced by any other and possibly faster iterative scheme that does not require the use of
the derivative ofM, for example the Secant Method. Note that we do not use the derivative
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of M because this would require the differentiation of an ODE with respect to its initial
condition, which we cannot perform here.

3. For any choice of an ODE integrator to computeM in (3), we can accelerate the conver-
gence by applying some acceleration technique to the iterations. One possible example is
applying Aitken’s acceleration method,

M̂n = Mn − (Mn+1−Mn)
2

Mn+2 − 2Mn+1 +Mn

.

2.3. INITIAL CHOICE FOR 0< ε� 1

A crucial ingredient in speeding up the convergence of the iterations, is a good choice of the
initial guessv0. Sinceε � 1, we can use small-parameter asymptotics and argue that the
oscillations of the limit cycle have a small magnitude, and apply some asymptotic technique
in order to obtain a good estimate forv0. The simplest method to obtain a good estimate forv0

or to obtain a good estimate for the average ofv over a cycle is to writev(t) = v̄+ εν(t)+ . . .
for some unknown parameterv̄ and unknown functionν(t). Since the limit cycle is periodic
with periodT , and satisfies (1), the equation for the zero order approximated equation for
unknownv̄ is∫ T

0
F(t, v̄)dt = 0. (4)

Equation (4) can be solved numerically.
In the next sections we demonstrate the application of the above points.

3. Proving the existence of a limit cycle

A comprehensive study on the existence and stability of limit cycles for problems of our type
can be found for example in [3, Chapters 5 and 7]. However, for dimensionalitym = 1, and
with the specific form of the RHS in mind, we can carry out a simple analysis. If the solution
of (1) is uniformly bounded for any initial condition, then the Poincaré–Bendixson theorem
guarantees that this solution converges either to a unique limit cycle or to a singular point.
Since the RHS of (1) is periodic, there are no singular points. Therefore, the iterations (3)
converge to a fixed point ofM. We now apply this to our case and state the following:

Suppose thatF(v, t) is periodic in the variablet with periodT , and thatF(v, t) is bounded
by two linear functions ofv (e.g., as in [2]), that is,

−a1v + b1 ≤ F(t, v) ≤ −a2v + b2 (5)

for some positive constantsa1, a2, b1, b2. Then, there exists a valuev0 for which the solution
v(t) of (1) with the initial conditionv(0) = v0 satisfiesv(T ) = v0. SinceF(v, t) is periodic
with periodT , this implies that the solutionv(t) is the periodic solution of (1).
Proof:
Denote the solution of (1) withv(0) = v0 by v(t). For anyt we have

b1

a1
+
(
b1

a1
+ v0

)
e−a1t ≤ v(t) ≤ b2

a2
+
(
b2

a2
+ v0

)
e−a2t (6)
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Figure 1. The numerical trajectory for Equation (1). Application of the Runge–Kutta method, dt = 0·01256, (a)
initial conditionv0 = 0; (b) initial conditionv0 = v̄ = 0·43333.

Therefore, e−a1T < limv0→∞
v(T )

v0
≤ e−a2T < 1.

This implies that there exists a sufficiently large valueA0 > 0 such that the mapM maps
the interval[−A0, A0] into itself. It then follows thatM has a fixed point, which is exactly the
required value ofv0.

4. Examples

We first illustrate the method with a simple test case

v̇(t) = ε(sign(v(t)− δ cos(ωt))− αv(t)+ b); (7)

We choose the parameter valuesε = 0·01,δ = 1, α = 3, b = 1, andω = 1 (i.e., T = 2π).
Since the solutionv is interpreted as the velocity of an object that starts at rest, the natural

choice for initial condition isv0 = 0. We used a Runge-Kutta method of order 4, with 30
points along one interval (i.e., dt ≈ 0·01256) and obtained the numerical trajectory displayed
in Figure 1, Panel a.

Clearly, integration over manycycles(more than 50) is required before the transients dis-
appear and the trajectory settles down at the limit cycle. Note the small oscillations of the
limit cycle. Computations using the numerical trajectory show that the average ofv(t) over
one cycle isv̄ ≈ 0·42664.

We show that it is advantageous to first solve (4) numerically. Using the trapezoidal rule
with 50 nodes on[0, T ], we obtained the zero order approximationv̄ ≈ 0·43333, which is a
good approximation. If we are only interested in this average, we are already done. To compute
the limit cycle itself we start the same iterations with the initial conditionv0 = v̄ ≈ 0·43333.
The convergence is much faster than in the previous case. Figure 1, Panel b displays the
resulting numerical trajectory.

Recall now that the approach is to consider the problem as an iterative procedure, There-
fore, instead of storing the complete information on the numerical trajectory, we store only the
values of the mapMn = M(vn), for n = 0,1, . . . wheren is the number of the cycle. Figure 2
Panel a showsMn as a function ofn obtained for the computations with,v0 = 0 and with
v0 = v̄ = 0·43333. Note that starting withv0 = v̄, we are practically there after≈ 10 cycles,
as compared with starting withv0 = 0 which requires some 50 cycles for convergence.
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Figure 2. The iterationsMn, n = 0,1, . . . wheren is the number of the cycle. (a) The♦ and the+ symbols
indicate the solution forv0 = 0 andv0 = v̄ = 0·43333, respectively. (b) The♦ symbol indicates the solution with
v0 = 0. The+ symbol indicates the accelerated solution withv0 = 0.

Accelerating the convergence by applying Aitken’s method to the iterations can reduce
the number of required cycles. To illustrate, Figure 2, Panel b shows the values ofMn as a
function ofn obtained for the computations withv0 = 0 with and without acceleration. With
acceleration, the required number of cycles is reduced to≈ 10. Applying Aitken’s method to
the solution with the improved guessv0 = v̄ reduces the number of required cycles to≈ 6.

4.1. AN EXAMPLE WITH m = 2

Form = 2, we demonstrate our method with the system

v̇(t) = ε(sign(u(t)− δ cos(ωt))− α1u(t)+ b1);
u̇(t) = ε(sign(v(t)− δ cos(ωt))− α2v(t)+ b2). (8)

The parameter values used here areε = 0·01,δ = 1, α1 = 3, α2 = 4, b1 = b2 = 1, andω = 1
(i.e., T = 2π).

Solving the system of equations for the zero order approximation, namely
∫ T

0 F1,2(ū, v̄, t)

dt = 0 gives the solution(ū, v̄) = (0·3250,0·4333). Figure 3, Panel a displays the numerical
trajectory(u(t), v(t)) as a function oft , obtained with the initial conditionsv0 = u0 = 0 and
with the improved initial conditionsu0 = 0·3250,v0 = 0·4333. Figure 3, Panel b displays the
two dimensional iterationsMu

n ,Mv
n , as a function of the number of the cycle,n. The advantage

of starting with a better initial guess, by use of small-ε asymptotics, is evident. Panel c shows
that applying an acceleration procedure also improves the convergence.

4.2. EXTENDING THE METHOD TO CASES WITH AN UNKNOWN PERIOD

The basic averaging idea is simple, and can be extended in several ways. For a system of
equationsm ≥ 2, as we illustrated in the second example form = 2, the increase in time
saving can be substantial. Further, an extended version of the our technique can be applied to
nonlinear (autonomous) problems where the period is not known apriori.

One example which we briefly illustrate here is the Van der Pol (VDP) oscillatorẍ +
x = ε(1 − x2)ẋ where ε > 0 is a parameter (see [3, Chapter 11] for the application of
the averaging method to this equation). We can apply our numerical procedure to find the
underlying periodic solution of the VDP equation, although the periodT is not knowna priori.
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Figure 3. The solution of the system (8) using the Runge–Kutta method, dt = 0·01256. (a) The numerical
trajectoryu(t) andv(t) (+) for initial conditionsv0 = u0 = 0 and foru0 = 0·3250,v0 = 0·4333. (b) The
iterationsMu

n , Mv
n , n = 0,1, . . . wheren is the number of the cycle. The square and× symbols indicate the

iterations forv0 = u0 = 0. The♦ and the+ symbols indicate the iterations foru0 = 0·3250,v0 = 0·4333. (c)
The accelerated solution withv0 = u0 = 0.

This can be done by consideringT as an additional unknown and adding the requirement
ẋ(t0) = ẋ(t0 + T ) to the procedure. The implementation uses a numerical minimization of
F (x0, ẋ0, T ) = (x(0)−x(T ))2+ (ẋ(0)− ẋ(T ))2 whereε is a given parameter andx(0) = x0,
ẋ(0) = ẋ0, T are the initial guess.

Computing a value ofF requires the numerical integration of the VDP trajectoryx(s) over
one period, starting fromx0 andẋ0. The numerical minimization procedure attempts to locate
the limit cycle, by an appropriate choice ofx0 andẋ0. At the limit cycle,F is ideally zero. In
practice, this is approximated by the values ofx0 ẋ0, for whichF is numerically minimized.
Note thatF = 0 implies that

∫ T
0 ẋ(s)ds = 0 and

∫ T
0 ẍ(s)ds = 0. We use these auxiliary

conditions for validating the optimization.
For ε = 0·1 and the initial guessx(0) = 0, ẋ(0) = 1, T = 5, this procedure produced

the estimateT ≈ 6·286 to the unknown period, and enabled integrating the limit cycle. For
comparison, the asymptotic expansion using the averaging method givesT = 2π(1+ 1

16ε
2)+

O(ε4) ≈ 6·28711 ([3, Chapter 10]).
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5. Discussion

We have demonstrated here the use of ‘practical asymptotics’ to a problem arising in industry
(piezoelectric motors in our case). For a known qualitative limiting behavior of a limit cycle
with a known period, we showed how finding the limit cycle, as a long time behavior, can
be accelerated by a numerical acceleration technique, and also by a parameter expansion for
the case of small oscillations. This idea, called also ‘the averaging method’, appears in the
literature of dynamic systems in different contexts and applications. A comprehensive study
can be found in [3, Chapters 4, 5, 11].
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